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ABSTRACT 

The plane wave representation is generalized in terms of a three-dimensional 

Fourier transform, to yield an expression, which when combined with the 

incident field, gives the total electric field everywhere inside and outside 

non-magnetic scattering bodies.   This representation requires the knowledge 

of the scattering matrix and its analytic continuation in the frequency domain. 

The use of short pulse data to determine the properties of uniformly 

coated bodies is considered, where the main attention is applied to the illuminated 

portion of smooth convex bodies at high frequencies. 

Computational results are obtained, establishing the conditions that are 

required to determine the surface of a conducting body from knowledge of the 

total near field.   It is shown for the cases treated (sphere and prolate spheroid), 

that two separate conditions are required.   One of these conditions yields a 

single surface which is an approximation to the proper surface, whereas, the 

other condition yields a set of surfaces, among which is the exact surface. 
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INTRODUCTION 

In section II, the plane wave representation is generalized in terms of 

a three-dimensional Fourier transform.   The resulting expression when combined 

with the incident field yields the total field everywhere outside and inside 

non-magnetic scattering bodies.    This representation requires the knowledge 

of the scattering matrix and its analytic continuation in the frequency domain. 

The main emphasis is placed upon homogeneous bodies, a special use of which 

is the conducting body, and various relations are obtained.   The extension to 

non-homogeneous bodies is briefly considered.   The results presented here are 

not complete, since a significant amount of analysis has yet to be performed. 

The possibility of correlating monostatic short pulse data and bistatic data 

for a fixed frequency and direction of incidence may be achievable. 

The use of short pulse data to determine the properties of uniformly coated 

conducting bodies is considered in section III.    The main attention is focused 

upon the illuminated portion of smooth convex bodies in the high frequency case. 

Finally in section rv,  computational results are presented.   It is shown 

for the two cases of conducting surfaces, the sphere and prolate spheroid, 

that the two conditions    JE   | -   |E      =0, and   E x E* = 0  are required to 

establish the surface of the body from knowledge of the total near field.   The 

first condition yields a single surface which is an approximation to the proper 

surface.   The second condition yields a set of surfaces, among which is the 

proper surface. 



II 

THE PLANE WAVE EXPANSION AND ITS 
APPLICATION TO INVERSE SCATTERING 

It has been shown previously, that if the scattered far field (phase, 

amplitude and polarization) is known over all directions of observation, for 

a fixed direction of incidence, then a particular class of plane wave representations 

yielded expressions for the near field which held down to the surface of smooth 

convex bodies.   The plane wave representations involved, contained the far 

scattered field as an analytic function of the angles of observation.   The use of 

the plane wave representation will be generalized here, to yield    expressions 

that hold everywhere in space including the interior of the scattering body. 

To begin, the analysis will be restricted to non-magnetic bodies (although 

it could be easily generalized to include such cases) and the geometry of the 

scattering body will be limited by placing certain restrictive analytical properties 

3 
classes of surfaces chosen, will belong to class C     defined by Barrar and 

on the surface  S which encloses the volume  V  of the scattering body.   The 

classes of surfac< 

Dolph as follows: 
3 

A surface  S  is said to belong to class C    if there exists a finite number 

m  of images, x   =x(u, v), y   = y(u, v), z   = z (u,v), v = 1.2.3...   m  of the 
2     2 

disk  u + v < 1   that cover the surface  S  and such that the third derivatives of 
v     v v 

x , y   and z    with respect to  u and v exist and are continuous. 

Harmonic time dependence exp(-iwt)  will be taken in which case Maxwell's 

equations become 

V A E   -   ik   In /e        H 
—      — r    o   o      — 

\\x /e     V A H  =  -i(E/ k) 
/   o' o    -      — —' w 

inside the body 

outside the body 

2 
where k , the square of the propagation constant in the body, is associated   with 



2       2 
the free space propagation constant  k, i.e.   k   = k (k). 

The incident electric intensity will be expressed in the form 

i       ,_   ,-3/2         ik- x ._  ,. 
E    =  (2w)    '     a   e  (2.1) 

where  k  is the direction of the incident wave, and  a , the unit vector denoting 

polarization, will depend upon both k and index j (i.e.  a = a (k, j) where the 

index  j   takes on the value   1   if the polarization is in the 6  direction of a fixed 

coordinate system, and takes on the value  2   if the polarization is in the J) 

direction. 

Homogeneous Body 

The homogeneous body will be treated first.   In this case,  it follows 

from Banar and Dolph, that the total electric intensity   E   induced by the plane 

wave Eq.(2.1), incident upon the body,  satisfies the following integral equation 

(which has a unique solution) 

E(x)   =   E1(x) + 
«-*2) 

Aw 

(2.2) 

where 

ikR 

~R 
0   =   ^-r-       , R=(x-x') 

and   E    is the value of  E   obtained by approaching the surface from the interior 

of the body.   If E    is the value obtained by approaching the surface from the exterior 

of the body, it follows that 

kl   *f- n   =   k2   E+- n        . (2.3) 



In addition, the magnetic field can be expressed in the form 

.,,. (A-*) H(x)   =   H(x)+-r-.    V   A   /     E   0 dv     . (2.4) 
  —    — 47T1U/U — 

o 

Before deriving a plane wave representation for  E(x),   the following 

vector will be introduced 

(A-*) ~ „,'       }   j      e"1-'-    E(x\k)dv'--%     /    e"1-'- 
(2TT)

J/2 ^V kZ 

V   V S (2.5) 

From Eq.(2.2),  it is seen that when    |x| —• oo,  in the direction given by 

the unit vector  k', then the total field becomes 

ik|x| 
E(x)     ~       E\x)+  \\   e,   .           T  (k\k) (2.6) 
""|x|^oo    "   "      /2      1*1   

indicating that the vector  T (k\ k)  is related to the scattering matrix.   When 

|k'| = |k| ,     T(k\ k)   is a measurable function being proportioned to the far scattered 

field in direction  k' , produced by a plane wave of frequency  ck,    incident upon 
A 

the body with direction of incidence given by  k .   The following theorem may 

now be proven. 

Theorem: 

If    L <J5MS>   = \/n      I e_i-'-    E(x, k) dx  , (2.7) 

then     £(k'-k)   =  6 (k-k')a  -   lim ^ -'^-  (2.8) 
e-* o     k   - k'   + ie 



Proof: 

It follows from Eq.(2.2) that 

t(k', k)   = 6 (k-isT> a + 
47T 

(2TT) 
3/2 

E(x',k) / e"1-'*- 0dxdv 

e-ik'-x 

k2   J     (2,)3/2     ' 
V •    /     0 (E'- n) ds   • 

On setting 

/    0(E~-n)ds 

one can show that 

-ik'• x    _  ,   , ,, 
e   —   —    V t/> dx   =    urn 

-ik'- x   . ., ,   /    -ik'- x 
e   —   -  •//ds  + ik'   I  e   —   — <//dx 

R —TOO 
oo w S 

00 

when  S     is the surface of a sphere of radius  R   .   Letting k  have a small 
oo oo 

imaginary part, it is seen that the surface integral will vanish when  R -*• oo . 

The resulting integrals can be reduced as follows 

(2TT) 
3/2 

'*    (2.) 

ij2 • (x • x') - ik'* x 
dpdx     —— 

p - k - le 

'-   /d£     2    ^2   X      6^-iS'> 
p - k - ie 



,2 ,-l*-I 

"    k2-k.2 + ie 

Combining the above expressions, one obtains the result 

£(k*-k)   =   6 (k-JS*)a  -   lim       -(-'- 
e-o    ,2      2,. 

k -k'  +ie 

An immediate consequence of the above theorem, is the following corollary 

which expresses the total field everywhere in space in terms of the incident 

field and the quantity  T (k\ k) , 

f . 
E(x-k)   =   E  (x-k)+    372      /    e2     2     K^.Wd^D      . (2.9) 

(27r) '       (/     p -k 

If the integration space  p is expressed in spherical polar coordinates (p, 6 ,0 ) 
P    P 

where the range of the variables are  -co<p<oo,   0 < 6 < ir/2 ,   and 

0 — 0   <  2n , then in the above integral, the contour of the variable   p  bends 

above the pole at  p = -k, and below the pole at  p = k . 

It can be shown in a similar manner that the magnetic field can be 

expressed in a similar form 

i / X£'2E 
H(x,k)   -  H1(x-k)+   JK /   4 Y £*!<£>W dp         .        (2.10) 

Wju (27r) ' J p  -k 

Integral Equation for   T (k1, k) 

Applying the condition that V • E = 0   in the volume, one can express 

Eq. (2.5) in the form 



T(k',k)   = 
OS-*) 

(2TT) 
3/2 

-ik»-x    I _,      .s       k'(k»- E) 
e I E(x- k) -   ~  ~2   ~    > dx (2.11) 

where the surface integral is replaced by a volume integral.   On substitution of 

Expression (2.9) for   E,  Eq. (2.11) reduces to the integral equation 

T<k'.k>   =  (k2-k2)[l-J^ ) 

(2TT) 
3/2 

a"1-'-  E  (x, k) dx 

V 

(2JT)' 

_dg_ 
2   i,2 

P -k 

i(p-k') • x   .      _,    . . 
e   *   —      —  dx   T(jD,k) 

Defining  V(k\ k)   to be the Fourier transform of the body, as follows 

V(k\k) 
(2*y 

i(k'-k)- x   . 
e   —   —    —  dx (2.12) 

V 

one obtains the following fundamental integral equation for  T , 

(k?-k2)j.v(k,k.)+ j y^y> T(£,k) _/lf  ,v       k'(k*- T) T(k',k) -  ^ £- 
k   - k 

(2.13) 

For the case of almost transparent bodies,  i.e.   where 

2     ,2' 
(k2 - k2)   V  (k, k') 

is small, an approximate solution to the integral equation is obtained through 

a process of integration, yielding the Born approximation 



T (k\ k) ~ VY (k', k) | a V(k, k') +   / d£   ffi j )  A (£, k) V (k, _p) a + 
P - «• 

whereA(k\ k) is the operator 

2  ,2 
A    -ft-*2) 1      k'(k'-  ) 

For the case of a perfect conductor, i.e. . Im k -*oo, the integral equation (2.13), 

cannot be used by itself.   An additional equation is required.   The details on 

the particular aspect are given later on. 

Relationships Among T (k', k) 

In order to attempt to reduce the number of measurements needed to 

determine the scattering body, or in order to correlate different sets of 

measurements (such as for different directions of incidence), various relationships 

involving  T (k\ k)  for different  k' and  k are sought. 

Denoting the complex conjugate of a quantity be a super bar,  it can be 

shown that 

V(k,k')   =  V(-k, - k') 

2 
Hence it follows that the complex conjugate of Eq. (2.13) yield for  k    real 

ft-*) a  V(-k,-k')+ I d£    Y{~2' f]    T(jD,k) 
P - k 

=   T(k'  k) - --    "} 

- -'-' 2      2 
k'   - k 

(2.14) 

In the above equation, replace  k by  -k , and  k'   by   -k' .   In doing so, the 

polarization vector  a  must be changed appropriately, i.e. 

a(k, j)   =  e.   a(-k, j) 

8 



where 

1     for j - 1 

-1    for j = 2 

This results in the following 

r 

(k^-k2H e    a (-k, j) V (k, k') +   /   d 2   V(
2
£,~^    T (-B, -k) 

J P - k 

2     2 
k« - k 

(2.15) 

It follows that on subtracting Eq. (2.15) from Eq. (2.14) for j = 1,  and adding 

them for  j = 2, that the vector 

T(k',k, j) - e    T(-k',-k, j) 

is a solution of the homogeneous equation corresponding to Eq. (2.13). 

Since the solution is unique, the following must hold 

T(k\k, j)   =  e.   T(-k',-k, j) ;  ^   real (2.16) 

This result holds only for  k ,  real and finite.   However it can be shown that 

it will also apply to the case of a perfect conductor, where  Im k ->oo . 
2 

For general real or complex values of  k   , an additional set of relations 

may be obtained.   To proceed, we first note that 

dk'   V(jD,k') V(k\k)   =  V(£,k), 



hence upon operating on Eq. (2.13) with respect to 

dk' V (k», q) . . . 

it is seen that the left-hand side is invariant.   Defining 

k(k»-  ) 
T(k\k)   = 

k'2 - k2 
T(k',k) 

one immediately obtains the result 

(2.17) 

dJ2 V(£)k') T(£,k)   =   T(k\k) (2.18) 

This equation will be shown to the additional equation required for the case of 

a perfect conductor.   For present purposes, this equation, combined with 

Eq. (2.14) which can be expressed in the form 

r r \ 

(k2-k2)< a  V (k, k1) +    / d£    V(-g'-')     T (p, 
2   , 2 p - k 

k) •    =   T(k',k) (2.19) 

can be used to eliminate the volume factor V(k\ k) .    In Eq. (2.19) replace 

k'  by  -a, ,   and operate on the equation with an arbitrary unit vector  b , yielding 

b-a v(fl,-k)+/d£ ^M.Hy = *-l^>$ 
P - k 2       2 

k^ - k 

Operate on this equation with the integral operator 

dq  T(5,k') 

10 



and employ relation (2.18) to yield 

b • a  T(-k,k')  + /  2
d£

2     [b • T(£,k)]   T(-p,k') 
J P " k 

(2.20) 

Since  b  is an arbitrary unit vector, this equation constitutes three independent 

equations.   For the case of a perfect conductor, the right-hand side of Eq. (2.20) 

vanishes.   It can be shown that for the perfectly conducting case, Eq. (2.20) will 

yield the law of reciprocity when |k'|   =  |k|   . 

Extension of the Integral Equation to the Perfectly Conducting Case. 
2 

Before considering the case where  Imk -KD, an analysis upon the 

decomposition of the field into the interior and exterior components will be 

treated.   The vector  T will be decomposed into parts  T    and  T    as follows: 

1   dJ2 
E (x, k)      for  x outside V 

0 for x inside V  , 

r 

2"    1    d£ 

E (x, k)     for  x  inside  V 

0 for x outside V 

It then follows from Eq. (2.21) by integrating over V , that 

(2.21) 

(2.22) 

a V(k,k') + d£   ^y      T+ (£, k) d£  =  0 (2.23) 

11 



and from Eq. (2.22) 

T   (k\k) 

(2TT) 
3/2 

E (x, k)   e   -    —  dx 

a V (k, k') +    / d£   \{2,-2
]    T (2, k)   = 

P   - k P   - k 

Applying these results to Eq. (2.13), one obtains 

(2.24) 

k'2-k2 \   - (    2       2     J   T(k',k) (2.25) 

from which the following relationship between  T    and  T     may be derived 

T~(k\k)   = 
V2-k2 

k2 - k.2. 

+ 
IT   (k',k) 

(k2 - k2) 

2 /. .2   . 2N    -   -     - 
k^ (V<- kO 

k' (k* • T+)V.    (2.26) 

; 

Hence on eliminating   T    from Eq. (2.24), one obtains the additional equation 
+ 

for   T 

+    (A -k2) T   (k'.k)-^ • 
k' (k' •  T+) 

k'2 - k2 

d£ V(£,k') T+ (£, k) 
(fr*2) 

k   (p - k ) 
£(£• T+) 

(2.27) 

12 



2 
The case of perfect conductivity may be considered by letting  Im k  -*co 

It is seen from Eq. (2.25) that 

Eqs. (2.23) and (2.27) reduce to the form 

aV(k.k')  +    / d£     Y^'f*    l(£«iS>   =   ° <2-28) 
p  - k 

T(k',k)   =    / d£V(£, k')  T (£, k)      . (2.29) 

These two equations constitute the two integral equations that are required for the 

case of the perfect conducting body.   Eq. (2.28) insures that the total fields 

vanish inside the body, whereas it can be shown that  Eq. (2.29) corresponds 

to Maue's integral equation.   The problem with working with Maue's integral 

equation by itself,  is that it does not always yield a unique solution,  since there 

exists a set of resonant frequencies such that non-vanishing interior fields 

satisfy the condition  n x E  vanish on the surface of the body.   Thus the additional 

Eq. (2.28),  removes this uniqueness problem by requiring that the field vanish 

inside the body. 

Alternative Representation Exterior to the Body 

For a fixed direction of incidence, the quantity  T(k\ k)   is required 

for all values of k' , in order to obtain expressions for the field everywhere in 

13 



space.   However it will be shown that restricting the requirements on the knowledge 

of T(k',k)  to the values of k'  which lie on the sphere |.k'| = |k|    , the total 

field can be obtained everywhere outside the minimum convex surface enclosing 

the body.   To show this, let the plane z = z    be the tangent plane of the body, 

such that the body lies in the half-space  z < z     .   For points in the half-space 

z > z   , the following representation of the near scattered field 
o 

r. 
1            /     -2' - 

ES(x)   =    -Tjz     / ^5 5-    T(£,k)   d£ (2.30) ,3/2     /     2   ,2 (27r) '       J    p - k 

can be reduced as follows: 

Set p    =  k sin a cos fi 
x 

p     =   k sin a sin 6 
y 

P2   =  kq 

when the domains of integration are 

0 < /3 < 2TT ,      0 < a < TT/2 -i 00 ,   and  - 00 < q < 00    . 

Expression (2.30) becomes 

/)7r/2-ioo     P 2ir      /'00 

E     =    77^-     / j I - £'~    g(o-, j9, q) cos a sin ada d)9d( 
o      J   .a,    q2-cos2a-ie 

(2.31) 

j 1 
g   =   exp 1 iksino- (x cos /3 + y sin /?) + iqzk?1 . 

From expression (2.5) , it can be seen that for  z >z   , the contour in the 

following integral 

14 



00 llr 
e     qT(p,k)dq 

2 2 
q - cos a - ie 

oo 

may be deformed, to yield the following 

.     ikcosaz        . at, •   o    i ,> 7r I  e T (k sin a cos |3,   ksmasiniS,   k cos a ;   k) 

Hence expression (2.31) may be placed in the form 

7r/2-ioo ^2-n 

E8        I1    / / e1-'-      E  (a, |8) sin a d a d 0 (2.32) 

where 

k'   =   k(sinacosj5, sin a sin j5, cos a) 

it 

given by (d, 0),  i.e. 

and   E     is the amplitude and phase of the far scattered field in direction 

ikR 
ES ~ V"     E   <e> 0) • — K —o 

Expression (2.32) was developed by alternative techniques in earlier reports 

(Weston,  Bowman,  1966). 

The Inhomogeneous Body 

The results may be extended to include inhomogeneous non-conducting 
2 2 2 

bodies, i.e. where  k    = u e/u  (a real function) and k    varies continuously 

in the medium.   In this case, the appropriate integral equation for the total 

electric field is (Barrar and Dolph) 

15 



E   =El
+^     /   0(k2.k2)E dv 

4?rk 

2   .2 
0 (k^-k )(E~-n) ds 

4TT 
(V^E) JL dv     . 

1 

which has been shown to possess a unique solution, although its existance has 

not yet been proven. 

For the homogeneous body, it can be shown that 

'   f f fk2-k2N) 
T<k'k)= —W /    .-1*-*   (k2-k2)Edv-ik.    /   e-^-^-;

(E-n)ds 

+   ik' 
(vk2- EJ 

-ik'-x    . 
e   —   —   dv 

(2TT) 
3/2 

e-iiS'-x     ^2.^ "    _   k'(kf- E) dv 

In this case, the appropriate integral equation becomes 

k2aV*(k,k') + k2 /   V gte'-jp     T(£,k)d£ 
p - k 

where 

V*(k,k«)   =   -^T 
(2itV 

with   k2   =  k2 N (x) 

*-*>'*   [N-I] dv 

16 



in 

ASPECTS ON PULSE SCATTERING FOR THE DETERMINATION 
OF UNIFORMLY COATED SCATTERING BODIES. 

3.1   Introduction. 

A convenient method for the identification of uniformly coated scattering 

bodies may employ the application of pulse scattering since more information 

may be obtained by such a transient analysis than from steady state results. 

The distortion of a pulse returned from a scattering obstacle, in fact, does 

yield some additional information pertaining to the properties of the scat- 

terer, e.g. the behavior of the leading wavefront of a scattered pulse usually 

indicates something about the composition of the body, whereas the behavior of 

the trailing return of a scattered pulse is related to the shape of the body and 

its radii of curvature. 

In this preliminary treatment on the identification of coated scatterers, 

the merits and the restrictions of such a transient approach will be investigated, 

using the solution of pulse scattering by planar layered structures where both 

the mono- and bi-static solutions of the scattered field will be considered. 

Here the wavefront technique is employed to solve the problem of 

scattering of a finite rectangular pulse from a lossy dielectric slab mounted 

on a perfectly conducting planar Burface.   The general case of oblique incidence 

is treated, where in particular the behavior at normal and at critical (Brewster's 

angle) incidence are demonstrated. 

17 



From the presented theoretical results practical methods will be deduced 

which may be applied to the problem of identification of the properties of 

uniformly coated scatterers. 

3.2 Theory 

3.2.1    The Laplace Transform of Maxwell's Equations and the Boundary 

Conditions. 

The solution of a non-steady state problems in electromagnetic theory is 

facilitated by a transform type approach.     Here the Laplace transform will 

be used since it is defined for a wider class of functions than the Fourier 

transform,   in particular to the extension to more complicated source dependence. 

The Laplace transform of a function f(t) is defined by the relation 

• co 

f(t)e"8tdt =   F(s) (3.2.1) 

The inverse transform from the   s   domain to the  t  domain is accomplished 

by means of the relation 

•B+ioo 

' ds (3.2.2) 

(±5 -I-10D 

B-ico 

where B,   a positive constant,   is chosen such that F(s) is analytic for 

Re la I   > B.     In particular the relation holds: 

£  I  f(t)(    «-*   snF(s)  -    V    s^Mo) (3.2.3) 
atn 1     f m 

The vector wave equation, satisfied by the transformed field vector _ (r, s) 

is given by 2 

Vx Vx I (r,s) +  ~  (1+ —) £(r,s)  -^ (1+ —) E(r.O) — — I es— £. es    — — 
c c 

= + \   dt   -(-,0) (3-2,4) 

c 

where fue - l/c . 
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The equation of the transformed magnetic field vector J$ (r,   s) is 

obtained by replacing  2| by j[ and E  by H.     Since the quantity of interest 

here is the scattered field,   it is always possible to define the time origin 

such that the initial values of the scattered field are zero everywhere in 

space,   and thus the transform of the scattered field vector satisfies the 

homogeneous vector wave equation: 

x   V x £S(r,   s) + *•= (1 +   —) £ S (r,   s) = 0 
c es 

(3.2.5) 

The boundary conditions satisfied by the em field vectors at the interface of 

two media (the normal to the interface n,   a unit vector,   is directed from 

medium (1) to (2)) are given by the familiar relations: 

a)    Both media of finite conductivity: 

n x rE2(r,   t) - E^r,   t)    = 0 or n x[£2  (r, s) - % Jr,   a) 

n x [H2(r,   t)  - H^r.   t) 

= 0 

0 or n x L&2(r,   s) - fi^Tj   s) • 0 .      (3.2.6) 

b) Medium (1) being a perfect conductor: 

n x E   (r,   t) = 0    or   n  x   £2(r,   s) = 0 

n x H2(r,  t) = K(r. t)    or n   x ^2
(r-   s) =   -^<r-   s> (3.2.7a) 

In cases where the approximated  Leontovich  boundary conditions 

-n x      ( n x E (r, t)  = Z n x H (r,  t) (3.2.7b) 

with Z,  the surface impedance,  may be implied,  the transient problem must 

be handled with care,   since the error introduced in the solution of the diffraction 
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/   1 Q 

of a  harmonic  wave     ( k  =   —  =    i—  )   by a curved obstacle of curvature c c  
p and refractive index n,„ is of the order of (n,_-*)    .   Thus only the 

12 12 c 
behavior of the scattered fields in the vicinity of the wavefronts which is 

related to the asymptotic behavior of the transformed field quantities for 

large values of the transform variable s,   can be properly derived.     Con- 

sequently the application of the   Leontovich type boundary condtions will lead 

to erroneous results for the field vectors when the time delayed from the 

arrival of the wavefront is large. 

3.2.2    Expansion of the Transformed Field Quantities as a Series of 

Time-delayed Terms Determined by the Optical Wavefronts. 

In Steady state electromagnetic theory it has been shown that the 

field scattered from an obstacle can be obtained by summing the contribution 

due to the various optical rays associated with the scatter geometry of the 

obstacle.     In transient analysis such families of rays may in addition be 

characterized by time delay factors due to the geometry of the obstacle. 

To verify this aspect two different types of problems will briefly be con- 

sidered. 

3.2.2.1    Pulse Scattering from a Finite Obstacle 

Consider the configuration of Fig.3-1 where a plane wave is incident 

on a finite obstacle of closed surface. 

Ref.   Plane 

m=l    lm 

Plane Wave 

FIG.3-1:  GENERALIZED RAY SYSTEM. 
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The scattered ray E    is the conventional geometrical optics result,  where the 

position of the specular point T is determined by the requirement that the 

optical distance between reference plane-scatterer-observation point is a 

minimum.     In addition two families of rays .     >C       and *—<C.,   ,   the 
m    lm m    ^m 

creeping wave contributions,   must be considered,  where the mth term 

z:< in the sum / .C      is associated with the ray which undergoes m complete 

circulations around the obstacle and then travels to the observation point. 

The path on the obstacle taken by each of these rays is determined by the 

condition that the optical distance be a minimum. 

Since wavefronts of non-monochromatic waves  satisfy geometrical 

optics,  the above described diffraction process in conjunction leads to the 

hypothesis that the solution of the pulse diffraction problem will be facilitated 

if the terms corresponding to the various monochromatic optical rays are 

identified and treated separately.     The result is expressed in the form of 

an infinite sum of residue and branch cut contributions,   where the individual 
oo 

contributions must be summed in a manner such that the rays    y  ' S     (i = l,L) 

are absent for t  < T . n 
3.2.2.2    Pulse Scattering from Layered Structures. 

Another class of problem is demonstrated in Fig.3-2, the problem of 

pulse scattering from a nonperfectly conducting slab.    The incident pulse will 

E 

Ref.   Plane of 
incident wave 

ES(r, t)  =    Y^E8 (r, t +mr) 
- ^—*    m - m=0 

©    ® 
FIG. 3-2: PULSE SCATTERING  FROM A DIELECTRIC SLAB. 
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be decomposed into an infinite sum of partial pulse returns,  where each 

of the partial returns are delayed by a time factor T ,  depending upon the 

material properties and the depth of the layer.     The amplitudes of individual 

partial returns are obtained by selecting the proper coefficient of the expanded 

CW reflection coefficient. 

3.2.2.3    Geometrical Optics Interpretation. 

From the two presented examples it consequently seems that the solution 

of pulse diffraction problems    can be handled most efficiently by treating each 

term in a wavefront expansion separately,  where the amplitudes of individual 

wavefronts are given by the corresponding term of the expanded CW scattering 

coefficient. 

The solution of the vector wave equation (2.5) for the transient case 

is obtained in the same manner as the solution of the vector wave equation 

for monochromatic fields.    In general,  the transform of the field vector 

w   (r,   s) can be expressed as the result of the same vector operations on two 

scalar functions which are solutions of a scalar wave equation.     Consequently, 

in discussing the decomposition of the field into its optical  components,   it 

will suffice to Investigate the behavior of a scalar function F(r, s) which 

satisfies the scalar wave equation: 

V*F(r, s) - ^r(l + — ) F(r,   s)  = 0 (3.2.8) 
- i es - 

c 

where F(r,   s) will be rewritten into the form of a sum of terms which can 

be identified with the partially delayed optical wavefronts: 

oo oo -s(l+^)l/2T°(r) 
F(r, s) =   T\ F  (r. s) »    J2 U   (r, s) e €S m   , 

M    m" n^O     m" <3-2-9> 

Thus the following relation is obtained: 
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S-C , (l + -T) 2 €8 
F    (r.   8) = 0 

m, -' 
(3.2.10) 

Operating on F   (r, s) and equating the result to zero,   it is found that the 
m 

functions U   (r, s) and T   (r) must satisfy the relation: 
m — m — 

s(l + —) 
es 

VT° (r) 
m — 

2       1       TT     /        v        /,      o xl/2 - —      U     (r, s) - s(l +—    ' 
2 |      m  — es 

2VU   (r,  s) 
m - 

VT°(r) + U   (r,  s)V2 T° (r) 
m— m - m — + V U    (r,  s)  = 0       (3.2.11) 

m - 

where the   spatial time factor T   (r) must satisfy the Eikonal equation 

V T    (r) 
m — •1/c' (3.2.12) 

If e is replaced by s = -iw and a = 0,   the remainder of Eq.(3.2.11) is 

identical with the equation satisfied by amplitudes of the geometrical optics 

waves in the asymptotic theory of diffraction 

3.2.3    Behavior of the Fields in the Vicinity of the Individual Wavefronts. 

The field behavior in the vicinity of the individual wavefronts can be 

obtained by considering the asymptotic behavior of the transform of the field 

vectors for large values of the complex frequency s.     This implies a 

Tauberian theorem which is obtained from an Abelian theorem given by 

Bremmer and van der Pol (Brown, 1962) as: 

If a one-sided original [here  time function f(t)J is represented  asymp- 

totically as t —>0+ by some power series of not necessarily 

integral exponents exceeding -1,   their the series in s,   obtained 

by transposing the original term by term represents the image 

here Laplace transform F(s) = L^f(t)J  asymptotically as s -*• oo. 
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However,  here the inverse of the theorem must hold as well which will 

enable to determine the asymptotic behavior of the original time function 

as t —> O    from the asymptotic representation of the image as s —> co. 

In order to justify the use of the "Tauberian Theorem" which is the inverse 

to the above Abelian theorem,   the nature of the time functions resulting 

from the inversion of the asymptotic representation of the image must be 

considered. 

A time function of the form: 

i(r, t) . a   6 A.) •o<t-.a) g./-° (3.2.13) 

has a Laplace transform if a > -1,  where the inverse is given as 

-st 
F(r,   s) = e a + 

oo 

n=0 

P(u - a + 1) 
a + 1 

(3.2.14) 
a > -1 

consequently,   since the transform of the field vectors is obtained as a 

solution of a vector wave equation and if for such,   in general,   a  Laplace 

transform exists,   it can be said that the transform of a vector field must 

be representable in the form of Eq.(3.2.13)in the vicinity of a wavefront 

(for a    rectangular pulse similar holds).     With the above stated theorem, 

allowing for an asymptotic expansion for large s,   it is reasonable to assert 

that the asymptotic representation of the inverse of these transforms can 

be obtained by a term by term inversion of their asymptotic representation 

for large s. 

Using the expansion of Eq.(3.2.9), it can be shown that for large values 

of s this equation can be rewritten as: 
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lim 
s»l «•>- § .">m<£. °>•*[-fr+if.-1<S>2)+T>] «-2-i5> 

m=0 

The time function which corresponds to the mth term in (3.2.15) will be zero 

for t < T   (r).     Since T   (r) was chosen such that it satisfies the Eikonal 
m— m — 

equation,   the equation t = T   (r) describes the arrival of the mth wavefront 

at r.     The amplitude of the disturbance associated with the wavefront is 

given by lim     U   (r,  s).     The function U   (r, s) satisfies for s —-woo: 
m — m — 

s -*oo 

2 VU   (r, s) •   VT° (r) + U   (r, s) V2 T° (r)  = 0 
m~ m- m- m - 

(3.2.16) 

which is the equation satisfied by the amplitude of waves determined by 

geometrical optics Thus it is apparent that in pulse diffraction 

problems the amplitudes of the waves at the wavefronts are determined by 

geometrical optics. 

3.2.4    Behavior of the Fields when It - T° (r)J >> 1.  _ L. m _J  

Neglecting the losses (a —> 0),   the inverse transform for the mth term 

in the wavefront expansion(3. 2.9)can be formulated as: 

/•B+ico 

F   (r, s) 
L  m — 

1 
2TTI 

U   (r, s) e   u 

m — 

t - Tu (r) 
m - 

ds (3.2.17) 

B-ioo 

where a typical amplitude function U   (r, s),   in general,   will have both poles 
m 

and branch-points in the region R(s) < B.     The fact that t - T° (r) 
m     j 

>> 1 

necessitates the deformation of the contour of integration in(3.2.17) into the 
.o 

left hand plane,   where Re (s) < 0.     If t - T" (r) 
m - 

R >> 1,   the most signif- 

icant contribution to (3.2.17) results from the singularity which has the maximum 

real part.     In Fig.3-3, a distribution of poles and branch cuts is demonstrated 

for the case of plane wave diffraction by a  finite convex body.     In this case 
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FIG. 3-3:     INTEGRATION IN THE COMPLEX S PLANE. 

(1>   €„   ^o o»   o 

£   * COB©   2+ain0   x 

C   »COB0   2 +sine   x 
/> *-> £* 

I   = cos0   2+sin0   x      (3.3.7) 
w 1 1 

"7 7- 

/       / 
/ 

/ 
/(2»€2.V   / 
(3)CT3 «oo 

/       / 

FIG. 3-4:     GEOMETRICAL CONFIGURATION. 
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the pole along the imaginary axis at s = - iu   and the branchpoint s = c     = 0 

are the significant singularities, where the contribution from s = - iu   yields 

the CW behavior and the integration around the branchpoint c     • 0 will describe 
-if" 1 the deviation of£   Im (r, s) from its steady state behavior.   Depending 

L r J    o      1 
upon the relative value of t - T    (r) R <-' 1, the contributions of the other 

o 
T    (rj 

m     . 
R»   1. singularities may have to be encountered, not so for 

In fact for    t - T    (r) R —  1   the exact solution of F    (r, s) is required, 
l_        m  "~J m 

which in most of the cases can only be approximately solved. 

3.2.5       The Dispersive Effect Due to the Presence of Finite Con- 

ductivity or the Properties of Layered Media 

3.2.5.1   Finite Conductivity. 

Although the constituent parameters \i, e, a have been assumed to be 

individually of a nondispersive  nature, the fact that a fi 0 introduces a dis- 

persive effect, since 

e1 *e(l+—) (3.2.18) 
es 

Assuming a non-conducting propagation media, the inherent source of dis- 

persion then may be related to the effects of the conducting obstacle only. 

Applying the results of section(3. 2.3) to equation 3.2.18), the behavior of the 

reflected wave solution in the vicinity of its wavefront is determined as 

lira   e1 - limed + —)= e (3.2.19) 
es 

S-»00 8-+0O 

This indicates that even a good conductor acts like a dielectric in the 

immediate vicinity of the wavefronts, i. e. the reflection coefficient is 

determined by the dielectric constant only.   This property will be shown 

in the next section, where the transforms of the individual field vectors 

are derived explicitely for the scattering from a lossy slab mounted on a 

perfectly conducting planar surface. 
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As long as oblique incidence is excluded, in general, it can be said 

that the dispersive effect of a conducting media is solely caused by the fact 

that a ^ 0, The significant parameter in the assessment of the magnitude 

of the dispersive effect is the relaxation time T   • (2r)/(o/ e), where 

u   = (2TT)/ T   » (a / e) may be denoted as the critical radiant frequency of 
c c 

the medium.   Ifcr>> 1, i.e. u>  » 1, then, in general, the dispersive 
c 

effect can be neglected since signals decay in a time of a few relaxation 

periods T.   It appears that the dispersive effect cannot be detected if 

u   >> u where u        is determined by the high-frequency cut off of c mux mux 
the detecting device.   Thus only for those materials for which u   < w    the 

CO, 
operating frequency, dispersive effects are non-negligible. 

3.2.5.2   Layered Structure 

Yet there still exists another source of dispersion, although /u, e, a 

are of non-dispersive character and a may even be zero.   For instance in 

the case of oblique incidence on a grounded dielectric slab, dispersion will 

be encountered due to the superposition of waves which results in a sep- 

aration of phase and group velocities, deviating from the intrinsic velocity 

of the medium 

3.3. Pulse Scattering from a Lossy Dielectric Layer Mounted 

on a Perfectly Conducting Planar Surface. 

To receive more insight into the problem of pulse scattering from 

finite coated, convex scatterers, the planar case will be treated first for 

both oblique T E and T M plane wave incidence for the general case of a 

lossy dielectric layer.   For simplicity a rectangular pulse of pulsewidth 

T, carrier frequency w    and amplitude   f o (r • 0, t * 0) = 1 is chosen, 
o, 

propagating at an angle   6, to the normal of the interface as Illustrated In 

FIG. 3-4. The corresponding field quantity, normal to the plane of incidence 

(in the TE - case the E - vector, in the TM - case the H - vector) is then 
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described as: 

t        <    C/c 

f1^, t)  -  x     Jexpi   (kjj-w  t)   C/c    <    t    <     ?/c 

0 C/c      +   T   <    t (3.3.1) 

where jj   a (cos 0    z + sin 9   y) (3.3 2a) 

f    (kr, t)   «   f.  (k)exp -iu t (3.3.2b) 
*" x o 

F  (k,r)   »expk? (3.3.2c) 

u • i s,    • « -iu (3.3.2d) 

This time dependent function F (k r, t) in turn can be expressed in terms 

of an inverse Laplace transform: 

rB+i oo /*B+i co 
J /,       .x     ^   \        ts „    /      . x    1 ts .,      -(s+iw ) 
F<kr,t)-- e    F1(..r)d.--l      e    (1-.) o       ( 

Jfi-ioo jB-tJ-*1^ V, 
ds 

Any other shape of finite impulse can be obtained by convolution properties 

which will not be considered here. 

The scattered field in the direction of reflection is given as: 
/JB+i co 

A   I                  taf,      -<s+iu ) Tl 
. s ,.       .„    x    \ e   Ll-e o    J „s  is 

Where 

1     KK^t)S2ni\ 
JB-i oo 

(s + i u ) 
o 

F    (—, r)   = R               (—) 
c    -'           cu        ^c ' 

ik   C 
C                8 

5    =( -cos 9,2 + sin 9, y) 
S                               11 

F    —, r )  ds (3.3.4) 
c     "" 

(3.3.5a) 

(3.3.5b) 
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The total reflection coefficient R^ 'J*.   ^ is determined from the C W C W     c 
case, where v denotes either T£ or TM incidence, and fx whether of electric, 

magnetic or power type.   For proper expansion of the total reflection co- 

efficient the derivation of the C W electric,  magnetic and power reflection 

V   IX V   IX 
V  '£  and transmission W   *l  coefficients is thus required for the 

behavior at one interface where R   '       ( — )  describes the case of a 
L/ W C 

grounded dielectric slab and must be derived as well. 

3.3.1       Derivation of C W Reflection and Transmission Coefficients. 

The constituent parameters are given as: 
2       1 2 

a) Medium (1):   c, = e ,    u   = v ,   a» 0,   v,   «     * c (3.3.6a) 
1       o        1       o 1       t   IX 

c
2 

c €
2  (l + -^-   —) ' M2 B Po' °2 * CT 

N(s)=Nri^Y/2 N2=V    %-°_2_ 
6o C2 

2 2 2     2 2 2-2 
k_   =   u>       «   -  s    N   (s), v_   -   c    N     (s) (3.3.6b) 
^     T        T 2 

v
2 

d   = depth of layer, 

c) Medium (3):       o„   = oo 

3.3.1.1   TE - Incidence for d ° oo; f   (r. t) »  y  E  (r, t) • 

Applying the boundary conditions of equation (2.6) the electric (voltage) 

TE reflection coefficitne for the case of d » oo is given as: 

(—)  cos d   - /N   - sin2 e 
o  

^ (-2-) cos e1 + /N2 - sin2 e1 

E
8 

EyTE a  _v_   =   EV) 

E 
y 
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and the magnetic  TE reflection coefficient as: 

HyTE   _   _ EyTE (3.3.8b) 

which would be identical with the electric reflection coefficient for the case 

of reversed propagation, i.e. if the wave is traveling from the denser into the 

less denser medium, which will be denoted as 

Ey_TE   a   _EVTE   _   ^TE   =   _ H^TE (3 3 8c) 

sin^2 
where the Fresnel's law of reflection is given as    —:—— =   N (3.3.9) 

Dill  \J 

The transmission coefficients are given as 

0) o 

f—J  cos 6   + /N
2
- sinV 

2\T    cosdi EWTE = HWTE = 1 + EVTE   __   __V  {3 

/      2          2 
2N   - sin 0, 

HWTE =EW_TE , 1 + KvTE . , _EyTE . J_ 1 „ 3  u) 

(~) cos d   + / N2- sinV 

The power reflection and transmission coefficients are then defined as 

PV TE  +  PWTE   =   1 (3.3.12a) 

where 

PyTE __ _ EyTE .   I^TE   ^   PWTE = EWTE _   HWTE       _ ^^ 

3.3.1.2   TM - Incidence for  6 = oo:   \r, t) = x H* (r, t). 

Applying the boundary conditions (3.2.6) the magnetic (current) TM 

reflection coefficient is given as 
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T¥s (—)   N" cos a   • oA   ..2      _ „        /N2_   . 2, 

H1 "        /Mr>\       2 /~1 2  
y l-S-J   N  cos 0j + /N   - sin 0J 

and the electric  TM reflection coefficient as: 

E„TM        H^TM 

HWTM = E,„ TM 
»Q    N2cos8l 

(—J   N2 cos 0   +  /N2
- sin201 

/5 

v 

(3.3.13a) 

V*     =-"V*" (3.3.13b) 

which again is identical with the magnetic reflection coefficient for the case 

of reversed propagation, i.e. if the wave is traveling from the denser into 

the less denser medium, which will be denoted as: 

yTM .      HyTM .   EyTM .     Ey_TM (J_, ^ 

The magnetic   TM transmission coefficient is defined as 

+ HVTM = EWTM   __   __Z2  ^^ 

2 2 
2   / N - sin 0, 

EWTM = HWTM = 1 + EVTM=      / 1 .     (3.3.14b) 

'Mo\   2 n     2~~ 
—    N   cos 0   + /N  - sin 0, 
M,/ If 1 

The TM power reflection and transmission coefficients are defined as: 

PV•+  PW•  =   1 (3.3.15a) 

where 

P„TM        H..TM      E„TM HV•.    EV• (3.3.15b) 
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and 

P   TM       H   TM     E   TM (3.3.15c) 
w       =    w     •   w 

3.3.1.3    Derivation of the Total Reflection Coefficient R  ' f (r, s) 
 tot  

The total reflection coefficient R    ,    (r, s) will be determined by two 
tot     — 

different methods, namely 

a) The summation of all phase-delayed partial reflection coefficients, and 

b) The application of the equivalent transmission line concept. 

3.3.1.3.1    Summation of Phase Delayed Partial Reflection Coefficients. 

The reflection coefficients at the perfectly conducting screen are given 

as 

VuTE=lim VVTE=1< I^TE = _ VyTE (3.3.16a) 
N-*oo ' 

H   TM _   Urn H^ TM _ +    _ V   TM _ _ H   TM 
N-»oo 

(3.3.16b) 

The delay factor A is defined by 

A - exp  ( ik2   C*   )   =   exp    f- *>   N (s)   ? * 

£*  =  dcosfl     + dsinS     tg d     = (3.3.17b) 
t* £* M £* 

where 

q = d 

= d JL_ 
cos 6 

this however is exactly the desired result, namely that the delay factor 

is related to the group velocity, where 

V.V      C-  . (3.3.18a) pl2j2 cos02N(s) 

'V      \   »      C cos d /no return in z-direction for\ (3.3.18b) 
V 2        N (s) \grazing incidence. J 
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The group delay then can be defined as: 

o , N(s) d 
T   (s)   =      _/ ' 

cos 6, 

A =  exp  < - s  T 

g 

{ 

Id 
1 +     C 

g 

tt) 
1+    C 

where 
Jl^c T     (s)   =    2    T   ^n 

g 8 

n • 0, 1, 

A     s    exp 
n {- < (8> \ 

N d 
C cos 6, 

rr~w 
j i +1 

}     «    exp   <- s T° (s) | 

(3.3.19a) 

(3.3.19b) 

(3.3.19c) 

(3.3.19d) 

The algorism for the partial pulse returns can be written down immediately 

from inspection of figure 2: 

FS (s) 
o 

F° (8) 

F° (.) . 

=   W-A-U -A W 

=   W-A-U-A-V   -A-U-A-W 

W-A-U -A-V  -A-U -A-V • A-U -A -W 

= V 

- w W_-A-U (1) 

2 2 
= W-W_-A -U (A   U V) 

2 2 2 
= W-W     A -U (A  U V) 

FS(s) 
n 

tot 

i = W-W_A U 
2 n-1 

(A UV") 

s \ s 2     T        2 
(s)   + / F   (s) = V+WW   A U   1 +(A   U VJ 

o Z _i.     n — L 

+ *»J *••]•*+ !$&•% 
- A   U 

A2 UV 

(3.3.20a) 
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Replacing V, A and U by the proper expressions associated with the 

TE or TM cases, will yield the corresponding total reflection coefficient, 

where the reflection coefficients will be rewritten into: 

,r / *       1 - A (s)    t. ...   TT       VT TE       V..TM      , 
V (s)   = — . ; '    then with  U   =     U        *     U       »-I 

1 + A (s) 

tot 

L 

V + A  U ( l-A(s)   -(1+A(s) exp  (-2s T   (s) ) 
2 o 

1+A   UV ( 1+A(s)   -(l-A(s) exp   (-2s T (s) ) 

zAisl xp (sT (s)) -  exp (-sT (s) ) exp (sT (s))  -t- exp ( -sT (s) )_ 

E exp (sT (s)) - exp (-sT (s» + A(s) exp (sT (s))  + exp ( -sT°(s)) 

thus 
R    (8)   s  tan hi (s T   (a) )   - A (s) 

t0t tan hi (s T° (s)) + A (s) 
(3.3.20b) 

a)    Normal Incidence:    A (s)   = N (s) 

V.W.O..)  . Vf  (•  • 0. .) . iSSkk^d 
tot       1 tot        1 . o    . 

tanh 

r °, i tan U) T   (UJ), 

|wT0  (u) 

sT   (s) 

-N(s) 

+ N (s) 

i tan 

N(u>) 

+ N (w) 

V   TE cos fi 
b)    TE - Incidence =     A     (s)   =  2 N(s) 

cos Q 
1 M, 

(3.3.21a) 

VTEM VMo>    COS9l    tanhi 

R.  .   (s) 
tot /fj 

cos 6      tanhi 

s T   (s) 
-S1 

3 T° (s) 

N (s)  cos e, 

+ N(s)   cos 0, 
(3.3.21b) 

/ju   \     cos 9 
c)    TM - Incidence = VA      (s) = f—J    cp8 Q       N (s) 

^r 2 
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V  TM   . . 
Rtot    (8) 

cos B     tanhl 8 T°(s) 

*2  \ cos 0     tanhi 8 T° (s) 

-  cos 6     N(s) 

+ cos &     N(s) 
(3.3.21c) 

3.3.1.3.2   Application of the Equivalent Transmission Line Concept. 

The equivalent transmission line concept is derived from proper 

definition of equivalent impedances which describe the properties of the 

structure as illustrated in figure 4.   The equivalent transmission line 

input Impedance in this case is given as: 

Z_ 

Zt    (s) 
in 

lim 
• 0 

+ tanhi r. T° ( J 
1   + _^3_ tanhi L T° (sj 

=   Z„   tanhi i [s T° (.)] (3.3.22a) 

where the "voltage" (here electric) reflection-coefficient is defined as: 

Is T° (s)J ~ "z7 
VD      / v        Zin-Zl 

Rtot(8) ="z-Ti- 
in 1 

tanhi 

tanhi f T° (.)] + 
Z1 

(3.3.22b) 

thus to verify the result of the preceding section it is sufficient to show 

that the     AV (s) Z   (s)   and both derivations are identical. 

V> 
a)    TE - case. 

Z 

1 
cos 8 

the characteristic impedance of medium 

(1) 

'1 = 
V. (3.3.23a) 
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N(s)cos d, 
the characteristic impedance of  medium 
(2)   * • v^r 

VATE/  \ A      (s)   = 

2 

'cos 6 

cos d 
N(s) 

1 

which is identical with the result obtained before. 

b)     TM-case 

Z       cos 6 , 
°1 l 

where 

(3.3.23b) 

(3.3.23c) 

(3.3.24a) 

Z2   "   Zo      ^ 2 °2      N(s) 
where (3.3.24b) 

VATM(1 i ZA    /'.\ !!i!i 
'        (B>=(^JTMWJ    °°°°2 

N(s) 

which also checks with the result obtained before.   The relationship be- 

tween the total reflection and total transmission coefficients is identical 

to that derived for the partial coefficients.   Thus the total reflection coeffi- 

cients always can be expanded as 

tot o Z* (s)   =   V +  ( W- W - A   U) 

2 2 2 
1   +  (A   U V   )    +    (AUV). 

where A  takes care of the proper time delay of the pulse returns which is 

strictly related to the group velocity as shown by Eqs.(3.3.18b) and 

(3.3.19b). 

(3.3.24c) 

(3.3.24d) 
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3.3.2    Evaluation of the Inverse Laplace Transform. 

Having expanded the C W reflection coefficient R    (s)  into the 
tot 

proper algorism, the backscattered field can be derived by evaluating the 

Inverse Laplace Transform of equation (3.3.4): 

iB + ioo 
ik?   . 

— ) e        ds t *t    *\      _£_   I e       Ll - e °    J    _      / is \ 
-f {*x) = 275  W)  Rtotl7; 

C/B-ioo ° 

For proper evaluation, it is convenient to introduce anew special time 

variable t    by choosing an observation point at (0, 0, z, ct ) 
o o 

t = -+t . (3.3.25) 
c     o 

Introducing this variable into (3.3.4) and rewriting the Inverse Transform 

into two parts, it can be shown that 

fS(r,t)   =  ff (r6t ) + fj?(r,t ) (3.3.26a) 
-    - 1   -    o 2        o 

where 
JB+ioo 

f8,    ,1        -if exp[2/c + to]s 
Ll   -'V 27Ti (8+iW  ) tOt \C  / 

JB-ICO 

ds        (3.3.26b) 

jB+ioo 
J^l      f exp[z/c^to-T)]s 

* 2 & to)   •       2*1  sT^   Rtot (T) 
dS 

V B-ioo 

=  -e~iL)T   ff (r, t   - T) (3.3.26c) 
l-o 

thus for: 

t < 2/c   or  t < 0   : f S (r, t )   =   0 
' o —     —    o 

Z/c < t < Z/c + T  or  0 < t < T: f S (r, t )   =   f ? (r, t) —    — —   o— —    -   o        — 1 
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t > Z/ c + T  or  t   > T:       1S (r, t )   » f " (r, t ) 

+ «J     fct)   "   f^^n-e-V     f^^VT) (3.3.27) 

The last expression rewritten into Fourier Transform terminology becomes: 

fBk<o> - f! fey - fi fey l-U (t -T) o (3.3.28) 

where U (t) is the Heaviside unit step function, and thus for  t   > T the 

initial response is cancelled. 

3.3.2.1   Normal Incidence 

At normal incidence the TE and TM cases cannot be distinguished, 

and the electric reflectic coefficient is given as: 

Ev . - H
v * -Ev    » ^4 

1 + N(s) 
(3.3.29a) 

and the delay factor as: 

2 o 
A    »   exp     -2 s T [< 1 + f JT Nd 

c 

Yielding 

RV   c'   fll       d2      ° J     1+N(s) <1+N(sr 

(3.3.29b) 

oo 

exp 
o  I    u 

-2 s T      l+_c 
L Vl      s s   -1     n*l    <- 

V + N/ exp ( -2 s T 1+ c 
n-1 (3.3.29c) 

let T     •  n T 
n 

1 +u 
c 
s 

(3.3.29d) 
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then 

*\e'     1       J      1+N(s) 1+N(S)   Z-JI I  1+NU) 
n-1 

exp -2 s T (3.3.30) 

3.3.2.1.1    Lossless Case:   N (s) « N,   T° (») ° T° 

In this case the Inverse Laplace transform can be evaluated 

straight forwardly, since only the pole at s = - i u   exists, and 

s o 
L (r, t     T   T o,     ,    n Rn  U (t   - 2n T ) o 1-U (t -2n T    T) 

o — 
E   (3.3.31a) 

where 
E     = $  1   dxp (- - ?l ) 

1 -N 
1 +N 

4N   . 
Rn=   -O^j2 

n-1 
n= 1,2, 

(3.3.31b) 

(3.3.31c) 

Thus if 2 T    > T,   the pulse returns are separated, in Fig. 3-5 the cases 

N « 2,   2 T° = 2T  and T = 2 0 T   are plotted. 

A meaningful application of pulse scattering to the problem of inverse 

scattering  requires  an     operation with pulses of extremely small time- 
o 

width, or of exceedingly large timewidth where T < 2 T .   Since it must 
o 

be assumed that T   is extremely small and the information from which the 
o 

electric properties can be determined are the time delay factor T   of the 

layer as well as the amplitude ratios of the partial pulse returns, these 

quantities must be distinctly measureable.   The refractive index of the layer 

In the lossless case can be determined as the average value over the second 
th 

to the m     time delayed pulse returns, excluding the first return as 
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f    (r, t ) 
*-'   o 

4T       5T 
2T        3T 6T 7T 

IT 
8T 9T 

10T 
—1= —.t. 

_2T 

FIG. 3-5:     PULSE SCATTERING FROM A GROUNDED LOSSLESS 
DIELECTRIC SLAB   ( N = 2,  T° = T). 
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N 

[      l-en+l. n 

1-1 e +1, n 
J n 

(3.3.32a) 
nTT 

in 

R   + 1 

en+1'D  '5  
n 

1 -N 
1 + N 

(3.3.32b) 

and the depth of the layer then can be determined from the time delay 

factor T   as 

T°C 
N 

(3.3.32c) 

3.3.2.1.2     Lossy Case:   N(s)   *  N(l+—) *'   , T° (s) = T° (1+-2-)1'* 

In this case in addition to the pole at s - i u    a branch cut will be r o 
introduced which degenerates into a pole at s •   - u  ,     for the slightly 

lossy case, where the following approximation may be implied: 

N(s) = N(l+^    1/2   - *<-l ^-ift 
N    1   + 2s J 

w 
« 8 + (3.3.33) 

In general, the partial reflection coefficients for the lossy case at normal 

incidence are given as 

E
v -    1 " N(s) 

1 + N(s) 

[l - N ( 1 + 
w     1/2 

s 
u     1/2 

1 + N( 1+ ~) 
s 

+ N       ['-" + T1 
w      1/2 
") 

1 + N 

L1 + N<1 + -r 
u      1/2 

1-N 
1 + N 

(3.3.34a) 
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Ew - i + Ev . 2 2 N 
1 + N        1 +N        L_ 

'l-A+
WcV/2" 

7+N/f+V\ 1/2" 

*w . i+Hv - i-Ev .JJL.-^L        r1'^^) 1/2 
1+N      1+N     ,   L      V   8^ _ 

R 

R 

i + NA+
uc\ "21 [l+Nrt 

l-N 2 N 1-fH 
1+N 1+N L $ "'1 

w*N    1/2 ""I 

VT A     u      \ 1/2   2 N [ 1 +   c     1    '     A 4N 

rr vr/T w \ 1/2-12 E+T+t) ] 
r-t±i 

o w 1/2 
exp     -2 B T      1 +_c_     H 

(3.3.34b) 

(3.3.34c) 

(3.3.35a) 

(3.3.35b) 

4»At»c> 1 - Nl lA   W2 

1   - 
; /T+Oi "/2 

4N (l-N) - 
(1+N) 

'i-»»^r+-.^^' 

WiT^Y?2 
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SHYI*".^ 

w        1/23 
+ N   1 +   c      * 

1 -   1 +   c 

^exp' -48T°6+
Uc^ ^ (3.3.35c) 

exp -^BT0^^2 (3.3.35d) 

By inspection of (3. 35) it follows that in the vicinity of the wave fronts 

of the partial pulse returns, i.e. for (t   - 2* T )~0, the behaviour is iden- 
o o 

tical to that of the lossless case according to the Tauberian theorem of section 

2.3.   In general, the exact evaluation is tedious ,  since two branch points 

-u     which for a small loss approx- 
c. 

are introduced at  s,     • 0  and s. 
bl b2 

imation degenerate into a pole at S   • -  u  ,      since N (s) —N (l +   c  ""), 
P c' g 2    8 

N+ 1 
In this case the integrals can be evaluated straight forwardly and will be 

treated next: 

Small Losses :    N (s)    N ( 1 +^c_   1  ) 
 2     s 

Applying the approximation of eq. (3. 33), the partial reflection 

coefficients can be rewritten into: 

R 
1 - N (s) 

1 + N (s) 
N 

1 +N 
s + a 
s +b 

u 
c/2N 
N 

u 
b=' 

c/2 N 
N+ 1 

_  4N(s)     2 _ 2      o 
d + N(s)r exp        w c-Wc/2 

(3.3.36a) 

X    — 
4 N s (s + c) 
(1 + N) (s+b) 

1     exp -2 T°   (s+Uc/2) (3.3.36b) 
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R 
4N 

n       (1 + N) 
s (s + c) 

(s+b) 
1-N 
1+N 

n-1   /•  ,  \n-l 
s+a \ o 
—J      exp-nwT 

exp -2nT 8 (3.3.36c) 

The total reflection coefficient is thus given as 

1-N     s+a     -  4 N 
R      (s, (j , T , N ) 

tot c     o 1+N     s+b 

n-1 s .    N  n-1 tm te~) 
s(s+c) 

(1+N) 2      te+b) 2 

exp(-nu   T )  dxp(-2nsT°) 

n=l 

(3.3.37) 

The integration in the complex s-plane thus results simply in the 

evaluation of the pole at s * - i w   and about the  n    order pole at 
o 

u 
s    = -    c    JJ ,    as illustrated in Fig. 3-6, there the inverse transform 
.P 2      N+l 
is 
is given by: 

s   =b 

A*- 

s*-iw    )( 
o 

B 

u 
s   =- c    N 

P    $~ N+l 

- lu X 

FIG. 3-6:     DEFORMATION OF CONTOUR FOR THE SLIGHTLY 
LOSSY CASE N(s)   —   N (l + u        1   ). 

 c     •" 
2        8 

is given by: 
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*i * '„» • ^r 

£+{ oo 

JB-1 oo 

es(to+2/c) R     (.,w,TjN) 

 tot        co 

(s + iu ) 
o 

(3.3.38) 

The spatial time variable t   then is given by  t    *t-2/c + 2nT   for the 
th ° o ' 

n    partial pulse return.   The inverse transforms in this case yield: 

(See Table) 
Immediately it is recognized that at the trailing end of the pulse 

(T >> 2T ), the transient contributions only will be present if b  is 

small.    The complete solution can be given as: 

_8 . o ,       -iut -b t 
r (t , 2 n T )   »  R   (A e       o + B e       o)  U (t ) 1-U (t -T) 

o 

00 

R 
fiTT 

n 
-iwt      . 2 n     Hat 

Ae       o + (B     + B     t + B      t   + B    t)e     o 
n n n n nn 

_ o 1 2 

U (t   - 2n T ) 
o 

1-U(t   -T-2nT) 
o 

(3.3.39d) 

where 

R 
1-N 
1+N 

R    m   _   4 N (1 - N) 
n-1 

exp (-n w   T ) 
Q (1+N)n+1 C 

(3.3.39e) 

(3.3.39f) 

and the A , B     may be determined by Heaviside's expansion theorem. 

u 
For N>>1,   a=b = c=   c  ,   it can be seen that 3.3.37 simplifies to 

2 ^h 
/ vr^     ,v        1-N        4N s \       1-N    n 

Rtot (,-uc, N>> 1} " HN" "(I^)2  •S^TJ.ZI TTN" c/&    n=l 

exp -2nT 
o/u \ 

C-f-+s). (3.3.40) 
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in which case the inverse transform of (3.3.39a) can be applied, yielding with 

(3.3.39e,f): 

fS ( t , 2n T°, N» 1) =   R  e 
o o 

iut 
U(t ) 

o 
1-U (t   - T) 

r     -iwt 
Ae       C 

o 

Id 00 
- c   t   -i 

+ B e 2 

o 
°       / .   R U(t -2nT°)   1-U(t -T- 

o 
2nT ) (3.3.41) 

Before the question will be answered, whether the parameters N, p, d of the 

layer can be uniquely determined from pulse scattering methods, the case 

of large losses will be treated briefly. 

Large Losses:    N (s) 

The partial reflection coefficients for large losses are defined by 

Eq.(3.3.35) where it was shown that the behaviour in the vicinity is aside from 
o 

the material attenuation factor exp (-n T u ) identical to that of the lossless 
c 

case.   An exact evaluation of the I. L. T. in general will imply convolution 

methods, where the pole at s = i u   will be extracted and the I. L. T. then must 

be solved for the case of delta pulse incidence and the following types of 

integrals must be evaluated in the complex  s-plane: 

I    (r, t )  = 2»i   I 
JB-I 

CD 

CO 

St ^?_      V2 
i-N (1+   8     ) ds 

u>        1/2 
1 + N ( 1 +   c )   H n+1 (3.3.42a) 

and 

f8    (r, t )   » 
-n o 

V4N 
2?ri 

pB+i oo 

\ eBt[l-N(l4^ 
JB-1 co ~        .        w 

1/2 n- l 

1+N ( 1 +   c   ) 
V2 n+1 

.«A)V» exp 2„T   (l^)^2 

o s 
ds (3.3.42b) 
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Introducing the following transformation U = or   it can be seen that both 
c 

types of integrals have branch points at U = 0 and U • -1, where 3.3.47a,b 

become: , 

£ to p-.» • IS*. \      e^lrr-N.^nV2 

\ fc" 

pB +i to 

jjy (3.3.43a) 

^(^••/^^L^-K^nV2! 
(u+1) 

V2" 

a T   u   u ^2 (u+ir 2 

* e o   c du 

n-1 

n+1 

(3.3.43b) 

The behaviour in the complex u - plane is illustrated in Fig. 3-7: 

U 2   -1 
p U =0 

— P— 

extracted s 
by convolution 

B 

FIG. 3-7:     DEFORMATION OF CONTOUR. 

Introducing the new variable U • V   + i *,   where the positive sign 

corresponds to the top sheet, it can be shown that by adding the contributions 

of both sides around the branchcut, 3.3.43a becomes: 
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(r, p«u   t)   e    c       \ 
01 ° •   Jo 

-4 i v^2 (1 - v)"2 e -» dv 

v + (1 - v) N 

!w        f      1/2/,       vV2     ~vp  c_    I    v^    (1 - v)^     e        dv 

*   Jo fi-d-^v 

which for N * 1 only is tabulated, then 
u 

c     t 

x . f       (r, p=w   t) 
o     -*       c 

8    1        - 2 
7 r   e 

U) 

h ( 2   ty * u(t) 

Also the contribution to the second pulse return can be evaluated for N=l , 

using the transform pair 5. 6. 45   of [Bateman   J by proper repeated 

differentiation with respect to b » 2 T   u : 
c 

(3.3.44a) 

(3.3.44b) 

A       ,S 
y • in te. P=W„ t)= 

11 c 
(t - 2 T°)        -^"o*   I2(^)t     • U(t-2T°)       (3.3.45a) 16 

w       +2 T°)3 

c 

Similarly the consequent pulse returns can be evaluated using convolution 

properties and the transform pair  ( 5. 6.22) of |_Bateman J The exact 

results will not be given here, but it can be concluded that for 

t > 2n T  : 

xV    (r,P%tW^e C    WJi.   t)    U(t-2nT°) 
ni C 2 

g 
In Fig. 3-8the results of x f        (r, p«u   t) are plotted for N»l 

1 c 

K can be immediately recognized that the higher order pulse returns decay 

exceedingly fast. 

(3.3.45b) 
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FIG. 3-8:    x-f   ,   (r , p = u t) 
—nl    —1 c 

exp ( - 2   w t) 
 c 

n + 1 

u 

n+1 
c 
2 t) 
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For N <ff 1 no closed form solutions exist for any of 3.3.43. Yet enough information 

has been obtained to derive conclusions about the possibility of identifying 

the parameters N, u , T, from which e , a    and d may be determined. 

If the wavefront amplitudes are distinctly determinable and the 
o 

pulse returns seperated, i.e.   T < 2 T , then the ratio 

•••ir £ V w(fcS) ^ Z J n x 

n=i 
o 

can be determined and T   from the seperation of the individual pulse 

returns.   The attenuation factor exp (-w   T ) must be determined from the 
c 

oscillogram of the individual partial pulse returns.   Thus for lossy coating 

the pulse scattering method seems not to be the best approach.   In figure 

the pulse returns for N • const., d = constare plotted for various values 

of o to illustrate this point. 

3.3.2.2      Oblique Incidence. 

At oblique incidence the TE and the TM-cases must be treated se- 

perately, however as long as o    = 0 and N(s) = N, the evaluation of the inverse 

transforms is identical to that of normal incidence on a lossless structure 

For the TE-case the reflection coefficient are given by Eqs.(3.3. 8)to(3.3.11) 

and (3.3.21b) and the delay time of the partial pulse returns by (3.3.19a) which 

is the same for the TM-case.   For the TM-case the reflection and trans- 

mission coefficients are given by Eqs.(3.3.13)to(3.3.15)and(3.3.21c). 

Since the plane wave concept was applied, it is arbitrary where 

the observation point is located, thus let R (0,0, Z ) and r » Z   cos d, 
o o 

see Fig.3-4. The solution then is given as: 

co 

/ (r, t . e) 
~ o      l 

R U (t   - 2n T°) 
nTE, TM ° 
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V  (r, t ) 
-*   o 

4T       5T 
2T 3T 

—r~ 
6T       7T 

8T 9T 
10T 

—- t 

2 T 

FIG.  3-9:    PULSE SCATTERING FROM A LOSSY GROUNDED DIELECTRIC 
SLAB ( N « 2,   T° = T.   w   ^   0). c 
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One special case is of interest, namely the TM-case at critical incidence, 

i. e. if tan 9      » N, (0      — Brewster angle) which will be discussed in 
Br XBr 

more detail. 

3.3.2.3. Behaviour at the Brewster Angle for TM-Incidence. 
_   A. H   TM        E   TM     _ . E    TM     , H...TM,  thus 
In this case    V       * -   V       * 0, and   W       * 1    w 

it follows from (3.20) that there only will exist one partial pulse return, 

namely the second pulse return or the first internally reflected one, 

where 

Ro - HV• • 0 

R     (n>l) = 0 (3.3.48) 
n 

and 

R•    (•-•,     )   -    ltan<T°">   -1      -   -exp(-i2T°u) (3.3.49) 
tot 1        i_ . .       ,    o 

Br i tan ( T   u)   - 1 

This particular behaviour that at Brewster angle incidence only one pulse 

return will be observed, may be   used to determine the refractive index 

if the angle of incidence is known precisely.   However from this measure- 

ment alone the depth of the layer cannot be determined.   To find some in- 

formation about the depth of the layer, the angle of incidence has to be changed 

such that the delay time T   (0  ) can be determined. 

In this case a £ 0, the behaviour becomes too complex and pulse 

scattering at oblique incidence is not useful.   Only in the case of small losses 

and at Brewster angle incidence satisfactory results for the determination 

of the refractive index may be obtained. 
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IV 

ANALYSIS OF THE COMPUTATIONAL RESULTS FOR 
THE APPLICATION OF THE BOUNDARY CONDITIONS 

ETxET   =   0, AND E. E 
-s 

•   0. 

4.1   Introduction. 

In the following outlines, further computational results will be presented 

in addition to those given in Quarterly Report No. 8579-3-Q (Weston et al,   1967) 

where the application of these two boundary conditions to the test case of a 

perfectly conducting sphere of electric measure  ka   =  2  was discussed.   There 

the expressions for  E .   (incident field), E    (scattered field), and  E „, = E . + E 
-i -s -T     -i   -s 

are defined as well as the properties of the two boundary conditions. 

In particular,  it was shown that j |E .1 -   |E   I I possesses only one minimum 

apart from a limited conical section about the focal point in the shadow region. 

Because of the vector nature,        this condition proves to be rather dependent 

upon local polarization properties and in general will not yield the proper 

surface locus, apart from a limited conical section about the specular point. 

The boundary condition  Ex E_   ;   in contrast, is applicable far into the 

shadow region with a very pronounced minimum at the proper point which lies 

on the surface of the scatterer.   The application of this condition is however 

limited due to the fact  that in addition to the proper surface locus, a family of 

concentric surface loci (hyperboloids of revolution) will be obtained, though of 

less pronounced minima (see Figs. 3-3a to 3-3d of 8579-3-Q) which were found 

to lie exterior to the proper surface locus.   The resulting minima in specular 

direction (6 = 180 ) are spaced at equidistant intervals of  k A R - 7r/2.   Finally 

it was pointed out that both boundary conditions have to be employed simulta- 

neously to precisely determine the point which may lie on the surface of the 

scatterer. 

These properties of how to employ the boundary conditions properly, 

required the computation of further test cases,  including spherical test cases 

of larger electric measure as well as prolate spheroids.   The results obtained 
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are presented in the following. 

4.2   Spherical Test Cases. 

Employing the notation of Stratton (1941 ), the expansion coefficients for 

spheres of electric measure   ka = 5   and  ka = 10  were computed as 

JS ,..n    n(n+l) 
I.     = d)     —  a 
oln 2 n 

...n   n(n+l) 
u)     —^  

J„(P) 

h(I)(P) 
n 

ka (4.1) 

'eln 
,.,n+l    n(n+l)    . ...n+1    n(n+l) 
(1) "T"   bn   =   (1) "T" 

(pjn(p)) 

n 

p-ka. (4.2) 

In Tables 1 and 2,  the coefficients for the particular test samples are given. 

E E   I — s 
Applying the two boundary conditions   E     x E*     =   0, and 

to the near field expansions, computational results are obtained Csee Figs 

4-la to 4-lg) which are very similar to those of the spherical test case  ka = 2 

as presented in Figs. 3-3a to 3-3d of 8579-3-Q. 

Because of the symmetry properties, the obtained results for azimuthal 

dependence   0, 0 + n   are identical and it is sufficient to plot the resulting 

curves for one   0   quadrant over   9 = 180   (-n7.5    ) 0 ,   where in Figs. 4-la 

to 4-lg the results for both  ka = 5   and ka = 10  are plotted.   It can be seen that 

except for additional pseudo surface loci within the proper surface locus of 

the associated sphere, the distribution of the surface loci of either condition 

is identical in character for all three cases   ka = 2, 5, 10.   The presence of 

the additional pseudo loci within the proper surface locus of the particular 

sphere in question required further investigation.   It was then found that the 

appearance of these additional surface loci depends upon the number of expansion 

terms which are used in the near field expansion.    This is illustrated in 

Figs. 4-2a to 4-2f, where the values of {llTxE*T} and    IE. 
— i 

E are 
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TABLE 4-1:   EXPANSION COEFFICIENTS FOR THE SPHERICAL 
TEST CASE   ka = 5. 

Re'W Im Com} Re ft M Im?el„} 
1 0.4124466 
2 1.200139 
3 -0.4013607 
4 -5.010763 
5 4.499645 

6 0.1782615 
7 -0.4877635 
8 -0.1805431E-03 
9 0.9469407E-02 
10 0.1284376E-07 

-0.2173557 
-1.469722 
5.973030 
-4.999988 
-1.499734 

1.926581 
0.8499482E-02 

-0.8061960E-01 
-0.1992659E-05 
0.8404801E-03 

-0.7760094 
1.449289 
0.1973786E-02 
4.409093 

-3.963083 

-3.339949 
0.1734405E-01 
0.1020575 
-0.2831584E-05 
-0.9685428E-03 

0.4169158 
-1.886731 
0.1088063 
2.642056 
6.613639 

-0.5453657 
-0.6966581 
0.2893283E-03 
0.1128810E-01 

-0.1705591E-07 

TABLE 4-2:   EXPANSION COEFFICIENTS FOR THE SPHERICAL 
TEST CASE  ka = 10. 

n 
Ke M Im Pom} 

Re M Im M 
1 -0.4878377 -0.6096100 -0.3913659 -0.4880560 
2 1.767869 1.475888 -1.474155 -1.222750 
3 2.121697 0.8790562 5.150302 2.091937 
4 -9.997529 0.1571675 -0.2891902 0.8370103E- -02 
5 6.574667 -3.891155 -10.79425 6.737797 

6 3.204104 -7.551152 6.915772 -18.40077 
7 9.203276 24.54987 4.963214 10.69282 
8 -32.51425 -10.64596 5.994395 1.027457 
9 22.34951 -19.90205 -11.65034 19.71129 

10 6.768880 18.06850 -24.09158 -14.23931 

11 -9.214209 1.312489 3.855611 -15.47917 
12 -0.1428198 -3.334598 4.980965 0.3193848 
13 0.8995424 -0.8892920E- -02 -0.1527055E- -01 1.178722 
14 0.3389343E- -03 0.1886478 -0.2287811 -0.4984860E- -03 
15 -0.3196965E- -01 0.8517152E- -05 0.1147929E- -04 -0.3711489E- -01 

16 -0.1493902E- -06 -0.4507445E- -02 0.5094764E- -02 0.1908575E- -06 
17 0.5398010E- -03 -0.1904478E- -08 -0.2346889E- -08 0.5992278E- -03 
18 0.1818520E- -10 0.5576441E- -04 -0.6109958E- -04 -0.2183134E- -10 
19 -0.5030335E- -05 0.1331804E- -12 0.1567326E- -12 -0.5457031E- -05 
20 -0.7627612E- -15 -0.4002248E- -06 0.4307819E- -06 0.8836814E- -15 
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0 = QC 

ka = 5 
N = 10 

0 = 45 

0 = 90 

0 = 135 

ka = 10 
N = 20 

0 = 45 

0 = 180 

 {lEj - |5J} 
 {-l£T-rTi

2} 

0 = 90 

FIG. 4-la:   RESULTING SURFACE LOCI FOR THE SPHERICAL 
TEST CASES  ka = 5, 10.   0 = 0°. 
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0 = 15* 

ka - 5 
N - 10 

0 = 90 

6 = 180 

ka = 10 
N = 20 

 {li.l-H.1} 
 {-|ET*Ey2} 

FIG. 4-lb:   RESULTING SURFACE LOCI FOR THE SPHERICAL 
TEST CASES  ka - 5, 10.   0 = 15°. 

0 = 90 
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0 = 30C 

0 = 90" 

ka = 5 
N = 10 

e = 45 

9 = 135 

e = 180" 

ka = 10 
N = 20 

d = 45v 

d = 135v 

— {11,1 - lij) 
  {-lsT*rT|

2} 

6 = 90" 

FIG. 4-lc: RESULTING SURFACE LOCI FOR THE SPHERICAL 
TEST CASES ka = 5, 10. 0 = 30°. 
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0 = 45( 

6 = 90 

ka = 5 
N = 10 

0-45 

6 = 135 

9 = 180 

ka = 10 
N = 20 

- Q = 90 

6 = 135 

 {-rtT»«vi"} 

FIG. 4-Id:   RESULTING SURFACE LOCI FOR THE SPHERICAL 
TEST CASES  ka = 5, 10.   <fi = 45°. 
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0 = 60 

ka = 5 
N = 10 

d = 45 

9 = 90 

0 = 135 

6 = 180 

ka = 10 
N = 20 

0 = 45 

d = 135 

— fail - ls.|} 
 {-|ETXE*T|

2} 

0 = 90 

FIG. 4-le: RESULTING SURFACE LOCI FOR THE SPHERICAL 
TEST CASES ka = 5, 10. 0 = 60°. 
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0 = 75C 

e = 9ov 

ka - 5 
N - 10 

e = 45 

e = 135 

0 = 18CT 

ka = 10 
N = 20 

6 = 45v 

6 = 135" 

 {is,l - |S.|} 

FIG. 4-lf:   RESULTING SURFACE LOCI FOR THE SPHERICAL 
TEST CASES   ka = 5, 10.   fl = 75°. 

6 = 90" 
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0 = 90 

e = 90 

ka = 5 
N = 10 

e = 45 

e = 135 

9 =  180 

ka = 10 
N = 20 

6 = 45 

6 =  135 

--{liil - H.l} 
 {-|ET^'

:
T|
2
} 

e = 90 

FIG. 4-lg: RESULTING SURFACE LOCI FOR THE SPHERICAL 
TEST CASES ka = 5, 10. 0 = 90°. 
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.eigT;E|i2j 

10 

10 

10 

10 

10 

3.0     X=kR 

FIG. 4-2a:   PLOT OF {-| ET x ET |     } VERSUS THE RADIANT VECTOR   X=kR 
FOR THE SPHERICAL TEST CASE   ka=2,   FOR A VARYING NUMBER 
OF EXPANSION TERMS  n=l. 2, 3, 4, 5, 6.   0 = 0°,  9 = 135° . 
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FIG. 4-2b: PLOT OF {(|E j | - |Ea||} VERSUS THE RADIANT VECTOR FOR 
THE SPHERICAL TEST CASE ka=2, FOR A VARYING NUMBER 
OF EXPANSION TERMS n=l, 2, 3, 4, 5, 6.   0 = 0°, 6 = 135° . 
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{-|ETxE*,|2) 

X=kR 

FIG. 4-2c:   PLOT OF {-|ET x ET | Z} VERSUS THE RADIANT VECTOR   X = kR 
FOR THE SPHERICAL TEST CASE ka=5,   FOR A VARYING NUMBER 
OF EXPANSION TERMS n=3, 5, 6, 10.    0 = 0°,  9 = 135°. 
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10 

10 

10 
-1 

10 

10 
-3 

i    (.I'-i'     l_ 3l|J 

- 

:\\ n=6 

n=10\   \\ 

^             \ 

n=3 
v    n=5 

; 
z 

w^r- - 
- 

- 

: \                  / 

- 

\  / 
1           1 1 

1 *~n=10 

• 1 1 n=3 

- 

 •  
X=kR 

FIG. 4-2d:   PLOT OF (||E ^ - |E s ||) VEESUS THE RADIANT VECTOR   X=kR 
FOR THE SPHERICAL TEST CASE ka=5,   FOR A VARYING NUMBER 
OF EXPANSION TERMS  n= 3, 5, 6, 10.   0 = 0°,  Q = 135°. 
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* i 2 • 

{-*i"iy / 

X=kR 

FIG. 4-2e:   PLOT OF [- |ET X ET|   }   VERSUS THE RADIANT VECTOR   X=kR 
FOR THE SPHERICAL TEST CASE   ka = 10,  FOR A VARYING NUMBER 
OF EXPANSION TERMS   n = 8, 10, 11, 12, 14, 20.   0 = 0°, 9 = 135° . 
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5 7 9 11 13 15 X=kR 

FIG. 4-2f:   PLOT OFJIlEil - |ES||}   VERSUS THE RADIANT VECTOR   X=kR 
FOR THE SPHERICAL TEST CASE   ka = 10,FOR A VARYING NUMBER 
OF EXPANSION TERMS  n = 8, 10,12, 14, 20. 0 = 0°, 6 = 135°. 
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plotted respectively versus the radial dependence for  0 = 0, d = 172.5 . 

Inspecting the curves closely,  it can be seen that these undesired pseudo surface 

loci of the condition    Ex E * Vwill not appear if the number of expansion 

terms  n  is equal to the electric measure  ka  or if 

"^n <    [ka+dca)1'3] (4.3) 

whereas with increasing deviation of n  from this value such additional minima 

will be present and for large  n ,  i.e.   n >   |ka+(ka) '        these minima 

again show equidistant spacing of k AR^i/2 .   For constant dimensions of 

the scatterer, the number of such minima will increase with decreasing 

operational frequency, where the innermost is exterior to the spherical caustic. 

Furthermore, it can be seen that these additional hyperbolic pseudo loci 

show minima which are relatively small compared to the pronounced dip of 

the proper surface locus and disappear in the vicinity of the latter, then appearing 

again exterior to the pronounced dip of the proper surface locus as indicated 

in Fig. 4-la by the curves   C       and  C        .   This phenomenon of additional 
in pext 

surface loci for the case where the employed number of expansion terms is 

much larger than the electric measure (4.3), may be explained by the fact 

that in the geometrical optics limit these interior surface loci are caused by 

rays emanating from the caustic of the sphere.   This explanation,  however, does 

not hold for the case where  n  is smaller than  ka, these minima are due to 

zeroes of lower order Bessel functions of the vector spherical harmonics. 

Inspecting the behaviour of   i |E I   -    JE  I V     for varying number of expansion 

terms, it can be seen that for  n <   [ka + (ka) ' the obtained minima will 

oscillate about the proper locus and only for  n >   ka + (ka) '        the minima 

will occur at the proper surface locus, however, depending upon local polarization 

properties, only within a limited cone about specular direction of apex angle 
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0 — 30   .   Except for the conical region about the focal point in the shadow 

region of apex angle  0—60    this condition will only show one minimum 

in any other radial direction. 

Summarizing the results, the following can be concluded for the simultaneous 

application of both boundary conditions for the precise determination of the 

proper surface locus: 

1)   First apply the boundary condition S IE.I   -   |E J \    , starting 

at the lower bound k R  =t, 5 ( and search for the first point 

Y     where    ||E  |   - |E  || reverses signs or   jlE.I   -   IEJ]    <1 

with a searching increment of approximately kAR^ .25. 

2\  Apply the boundary condition < E     x E*  >  about this point  Y 

within the range 

Y10-*/2   <   ^   <   Y1Q+W2 

employing a rather small searching increment of  . 01 < k AR_ < . 1 

to eliminate additional minima and search for the proper point which 

shows the most pronounced minimum. 

3)   In addition, it is advisable to employ the procedure at two or more 

different operational frequencies and plot the points of successive 

minima along one ray versus  R , since then the loci of additional 

minima will be shifting whereas the proper one will be independent 

of the origin.   In Fig. 4-3 these properties are illustrated. 

4.3   Prolate Spheroidal Test Cases. 

The computation of the near field was again based upon an expansion into 

vector spherical wave functions (Stratton,1941), where the approximate expansion 

coefficients were provided by P. C. Waterman ( 1965).   The following three 

test cases are chosen 

a) ka = 1,      a/b = 2,     n = 6 

b) ka = 10,    a/b = 5,    n = 16   . 

c) ka = 20,   a/b =2,     n = 28   . 
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k a = 5 k2a = 10 

e = 90 

e = 45 

0 = 135 

0 = 45 

6 = 90 

6 = 135 

9 - 180 

FIG. 4-3:   RESULTING SURFACE LOCI FOR A SPHERE OF RADIUS 
a , DETERMINED FOR   k = .5,  k   = 1   AND PLOTTED 

VERSUS THE RADIANT DEPENDENCE   R   TO ILLUSTRATE 
THE SHIFTING OF ADDITIONAL SURFACE LOCI (C.  , 
C , c2...). \ 
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The computational results are presented in Figures 4-4a through 4-7d. 

Inspecting these figures it can be shown that within a conical section 

about specular direction of apex angle  0—30   , rather satisfactory results 

are obtained.   The deviation from the actual (proper) locus in the region exterior 

to this domain have been expected by theory.   Comparing the results of the two 

boundary conditions it can be said that within a narrow conical section about 

specular direction the condition   iE_ x E* f   = 0  is superior to      E      -    E*   - = 0, 
^-T    -TJ      - ..        U"~i '   si, 

where it was found that the resulting locus for < E .1  -   |E   I >  lies interior 
f L-il     l-slj 

to both the proper locus and that for j E     x E*    > = 0.   It was shown that with 

increasing number of expansion terms, the resulting loci of either condition 

approach the proper one more closely.   The additional concentric hyperbolic 

surface loci of IE    x E* f = 0   exterior to the proper surface locus are again 

spaced equidistantly with    k A R = n/2   in the specular direction, and no 

hyperbolic surfaces were found within the proper one, though for the larger 

prolate spheroid such surfaces should be expected but the associated minima may 

be too small to be found with the employed searching increment. 

Considering the results exterior to the conical section about specular 

direction, those deviations have been expected by theory.   It was shown (7644-1-F, 

8579-1-Q) that the spherical partial wave representation of the near scattered 

field was convergent down to the minimum sphere enclosing the loci of the prolate 

spheroid.   Hence to determine the flank-parts (equatorial cross-section) of 

the prolate spheroid, either an alternative representation must be used, or 

else in the partial wave expansion the origin of the coordinate system must be 

translated from the center.   However in the representation employed, where the 

origin was at the center, the results of the condition      E      -    E     f     for the 

case  ka = 1, a/b = 2  yield very satisfactory results in this region 

(see Figs. 4-4f and 4-4g) if the local polarization properties are such the  E . 

is parallel to the scattering surface in the equatorial plane.   This behavior, namely 

74 



o 
OJ 

II 

CD 

o 
m 
en O 
.-i m 

T-H 

n 

CD 

o 
II 

CD 

O 
CO 

CD 

O 

II 

CD 

O 
lO 

II 

o o 
II 

i 

6 
T-l f^ 

—       O 

e^ to" 
4 U    ii 

6 £* 
i—i 

«   -T 
O   i. 
fe rt 
H is O 
9 w 
H3   W 

8 3 

TO 
o 
I—I 

H 
h-1 
P 
CO 

H 
TO 
w 
H 
H-1 

2 
l—I 

O 
« 
w 

en 
3 
o 
o 

8. o 

Wl 

75 



o 
II 

CD 

o o 
II 

CD 

O 
m 

ii 

IS. 

13 

I 

o 
00 

II 

CD 

O 
CO 

II 

i 
6 
»—i 

w 

o o . « 
CO 0 ^ co" 
T-H 1—1 

&H W   II 
II 

CD 

:E
 L

O
C

I 
F

O
R
 T

H
 

C
A

SE
   

ka
 =
 1

, 
N

 

< H 
Pn  CO 

5 H 
CO 

O 
o 
o 
CO W 

II D 
CO 

•SL J— w 

H-l 
< 
P 
I—I o 
« 
w 
B 

u a. 

og 

Wl 
X 

H 
Wl 

i 

Wl 

76 



o 
II 

CD 

O 

II 

CD 

lO 
t- 

II 

6 
i—i 

C/2 

O 
II 

CD 

Wl 

o 
CD 

II 

-SL 

CD 

I 

O 
I—I 

77 



w 
H 

3 
O 

ft 
w a 
« 
O 
W 

CD 
t—I 

II 

in 

Cd 

o 
o 

w 
o 
< 
W 

CO 

O 
2 
i—i 

H 
W 
P 
co 
w 
« 

w 
co 

o 
H 
CO 
w 
H 

< 
Q 
i—i 

O 
« 
w 

ft 
CO 

eg 

Wl 
X 

H 
Wl 

Wl 

78 



ii 

tO 
I 

o 
I 
St 

o o 
CO 

-SL 

o 
in 

i 

O 

3    -^ 

79 



CD 

H   » 

8- 

o 

o o W 

< 
O W 

o 
< H 
tlH CO 

o < 
59 
H O 
•J « 
P W 
co S 

2 
a. 

CM 

X 
H 

Wl 

en 
HI 

i 

-rH 

Wl 

80 



0 = 90 

0 = 0 

0 = 90 

6 = 180 

FIG. 4-5g:   RESULTING SURFACE LOCI FOR THE PROLATE 
SPHEROIDAL TEST CASE   ka   - 10, a/b = 5, N = 16. (0 = 90°) 

( '{iSj-   |5j)      {-|ETxE*T|
2} {proper locus}) 
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FIG. 4-7a:   PLOT OF {-|E T X ET |  } VERSUS THE RADIANT VECTOR FOR THE 
SPHEROIDAL TEST CASE ka=l, a/b = 2   AND FOR A VARYING 
NUMBER OF EXPANSION TERMS n=l, 2, 3, 4, 5, 6.   0 = 0°,  0 = 135°. 
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C-|£TxE*T|} 

10 ~"     X=kR 

FIG. 4-7c:   PLOT OF {- |ET x ET | 2}  VERSUS THE RADIANT VECTOR   X - kR 
FOR THE PROLATE SPHEROIDAL TEST CASE   ka = 10, a/b = 5 
FOR A VARYING NUMBER OF EXPANSION TERMS n=6, 10, 
12,16.   0 = 0°, 0 = 135° . 
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10 

10 

10 

10 

10 

5 6 7 8 9 X=kR 

FIG. 4-7d: PLOT OF(||Ei| - |E s||) VERSUS RADIANT VECTOR   X = kR 
FOR THE PROLATE SPHEROIDAL TEST CASE   ka = 10, 
a/b = 5   FOR A VAYING NUMBER OF EXPANSION TERMS 
11 = 6,10,12,16.   0 = 0°,  6 = 1350 . 
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that both boundary conditions will yield the best result for these particular 

polarization properties, was expected (8579-3-Q) and was found for all employed 

test cases.   Thus the simultaneous application of both conditions at low frequencies, 

such that ka^l , may be sufficient for a perfectly conducting scatterer of 

prolate spheroidal shape.   The additional minima of    Ex E*   •    that lie 

within the proper surface locus are of extremely small amplitude with respect 

to that about the proper surface locus and show a sharp dip, thus can be determined 

only if an extremely small searching increment is used, and may therefore be 

disregarded. 

Summarizing the results obtained for the prolate spheroidal test cases, 

it can be concluded as well that the simultaneous application of the two conditions 

at two different operational frequencies is the proper method of determining 

the point which may lie on the surface of the scatterer within that conical 

section which is exterior to the minimum sphere enclosing the two focal points. 
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